Crystal and Molecular Structure of the p-Bromobenzoate Chlorohydrin of Clerodendrin A^{1}

By N. Kato * and K. Munakata, Department of Agricultural Chemistry
C. Katayama, Department of Chemistry, Nagoya University, Nagoya, Japan

Crystals of the title compound are orthorhombic. $a=18 \cdot 95 . b=22 \cdot 74 . c=10 \cdot 06 \AA . Z=4$. space group $P 2_{1} 2_{1} 2_{1}$. The structure was determined from photographic data by Patterson and Fourier methods. and refined by leastsquares techniques to $R 0.0988$ for 2924 observed reflexions. The absolute configuration was determined by the anomalous dispersion method. and the compound shown to be an antipode of clerodin. except for $\mathrm{C}(2)$. $\mathrm{C}(3)$. and $C(8)$. Rings A and B are trans-fused. adopting chair and sofa conformations, respectively.

Clerodendrin a (I), a bitter principle of Clerodendron tricotomum Thumb. and an antifeeding repellent for the larvae of Spodoptera litura F., is a diterpenoid with a clerodon skeleton. Its structure and stereochemistry have been determined by chemical and spectroscopic methods. ${ }^{2}$ The absolute configuration of clerodendrin

(I)

(III)

A appeared to be as shown (I) from comparison of the o.r.d. and c.d. curves of its derivative with those of cholestenone derivatives. Clerodendrin A is therefore an antipode of clerodin (II), ${ }^{3}$ except for the configurations at $C(2), C(3)$, and $C(8)$.

In recent studies, interesting knowledge has been obtained with regard to the constitution and absolute configurations of diterpenes with the clerodon skeleton. Columbin, ${ }^{4}$ jateorin, ${ }^{4}$ chasmanthin, ${ }^{4}$ and isocolumbin ${ }^{5}$ are antipodal to plathyterpol. ${ }^{6}$ However, the diterpenes of the cascarillin group, possessing a trans-AB-ring junction, have virtually the same absolute configuration,
${ }^{1}$ Preliminary account, N. Kato, S. Shibayama, K. Munakata, and C. Katayama, Chem. Comm., 1971, 1632.
${ }^{2}$ N. Kato, M. Shibayama, and K. Munakata, J.C.S. Perkin I, in the press.
${ }^{3}$ G. A. Sim, I. C. Paul, T. A. Hamor, and J. M. Robertson, Proc. Chem. Soc., 1961, 75; I. C. Paul, G. A. Sim, T. A. Hamor, and J. M. Robertson, J. Chem. Soc., 1962, 4133; D. H. R. Barton, H. T. Cheung, A. D. Cross, L. M. Jackman, and M. MartinSmith, ibid., p. 76; 1961, p. 5061.
${ }^{4}$ D. H. R. Barton and D. Elad, J. Chem. Soc., 1956, pp. 2085, 2090.
e.g. cascarillin, ${ }^{7}$ solidagonic acid, ${ }^{8}$ kolavenic acid, ${ }^{8}$ kolavelool, ${ }^{9}$ and another. ${ }^{10}$ The third is attributable to a group of clerodin which has the same configuration as cascarillin about the ab ring. Only two compounds, clerodin and clerodendrin A , have the antipodal structure.

In order to confirm the constitution and to determine unambiguously the absolute configuration of (I), a matter of vital importance in biosynthetic and mechanistic considerations, and also to study the molecular geometry of the two fused ring systems (trans-octalin and furo-furan rings), we have undertaken an X-ray study of clerodendrin p-bromobenzoate chlorohydrin (III).

${ }^{5}$ K. H. Overton, N. G. Weir, and A. Wylie, J. Chem. Soc. (C), 1966, 1482 ; K. K. Cheung, D. Melville, K. H. Overton, J. M. Robertson, and G. A. Sim, J. Chem. Soc. (B), 1966, 853.
${ }^{6}$ T. J. King, Seetha Rodrigo, and S. C. Wallwork, Chem. Comm., 1969, 683.

7 J. M. Robertson, Proc. Chem. Soc., 1963, 235 ; J. S. Birtwhile, D. E. Case, P. E. Dutta, G. Mathews, T. G. Halsall, H. D. Sabel, and V. Thaller, ibid., 1962, 329.
${ }^{8}$ S. Kusumoto, T. Okazaki, A. Ohsuka, and M. Kotake, Bull. Chem. Soc. Japan, 1969, 42, 812.
${ }^{9}$ R. Misra and S. Dev, Tetrahedron Letters, 1968, 2685.
${ }^{10}$ P. R. Jefferies and T. G. Payne, Tetrahedron Letters, 1967. 4777.

EXPERIMENTAL

Compound (III) was prepared by warming clerodendrin A (I) in p-bromobenzoyl chloride-pyridine at $70^{\circ} \mathrm{C}$ for 11 h . At room temperature, p-bromobenzoylation of the $C(2)$ hydroxy-group was not achieved; only the epoxide group was cleaved by the action of hydrochloric acid. This is because of steric interactions with the $C(3)$ substituent. Crystals from ethanol were colourless prisms. The Laue symmetry and space group were determined from oscillation and Weissenberg photographs.

Crystal Data. $-\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{13} \mathrm{BrCl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, M 872 \cdot 2$. Orthorhombic, $a=18.95, b=22.74, c=10.06 \AA, U=4766.01$ $\AA^{3}, D_{\mathrm{c}} 1 \cdot 337, Z=4, D_{\mathrm{o}} 1.343$ (by flotation). $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=\mathbf{2 4 . 9} \mathrm{cm}^{-1}$. Space group $P 2_{1} 2_{1} 2_{1}$ from absent spectra: $h 00$ for h odd, $0 k 0$ for k odd, $00 l$ for l odd.

Cell dimensions were obtained by a least-squares method from $0 k l$ and $h 0 l$ Weissenberg photographs. Integrated equi-inclination Weissenberg data of the layers of $h k 0-6$ and $h 0-12 l$ were collected with Ni -filtered $\mathrm{Cu}-K_{\alpha}$ radiation by the multiple-film technique. Intensities were estimated visually by comparison with a calibrated strip. Lorentz and polarization corrections were applied and a total of 2924 independent reflexions derived.
Structure Analysis.-The position of the bromine atom was deduced from three Harker sections of the threedimensional Patterson synthesis as $x=0.217, y=0.075$, and $z=0.377$. The three-dimensional minimum function method was used to obtain the positions of 26 carbon atoms; R was then 0.58 . The correctness of these positions was ascertained by means of the least-squares method, with the co-ordinates fixed and with the atomic scattering factor of carbon assigned to all. After three cycles it was found that one of the carbon atoms was in fact a chlorine atom. After five further cycles of least squares with the atomic scattering factors of bromine, chlorine, and carbon, R was 0.385 . The remaining sites were located by five more rounds of calculations. During these, those atoms for which the temperature factors converged into values which were smaller than those of the others, were identified as oxygen; R was then $0 \cdot 188$. Four cycles of refinement were carried out with anisotropic temperature factors for bromine and chlorine atoms and isotropic for light atoms, resulting in $R 0 \cdot 101$. A weighting scheme of the Hughes ${ }^{11}$ type was now introduced with $w=1$ for $\left|F_{0}\right| \leq F_{\text {min }}$; $w=\left(\left|F_{0}\right| / F_{\min }\right)^{2}$ for $\left|F_{0}\right|>F_{\text {min. }} ; F_{\text {min. }}$. was set at 45 min on an absolute scale. A damping factor (g) of 0.8 was applied to all shifts and R fell to $0 \cdot 0988$ in three cycles for the 2924 observed reflexions; as the parameter shifts were very small the refinement was terminated.
The final atomic co-ordinates, with estimated standard deviations and temperature factors, are listed in Table 1, bond lengths in Table 2, and valency angles in Table 3. The final structure amplitudes for 2924 planes are listed in Supplementary Publication No. SUP 20550 (5 pp., 1 microfiche).*
Absolute Configuration.-In the final stage of the analysis, the absolute configuration of the molecule was determined by Bijvoet's anomalous dispersion method ${ }^{12}$ based on the bromine and chlorine atoms. The differences for thirtyone pairs of $I(h k l)$ and $I(\vec{h} \overline{k l})$ were measured on a Hilger

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp are sent as full size copies).

11 E. W. Hughes, J. Amer. Chem. Soc., 1941, 63, 1737.

Table 1
Final positional parameters as fractions of the unit cell edges with estimated standard deviations in parentheses. Atoms are numbered as in structure (III)

Atom	x	y	z	B / \AA^{2}
$\mathrm{Br}(1)$	$0.71703(019)$	$0 \cdot 42452(016)$	$0 \cdot 62252(022)$	*
$\mathrm{Cl}(1)$	$0 \cdot 45448(035)$	$0 \cdot 84397(039)$	$0 \cdot 98056(045)$	*
$\mathrm{O}(1)$	$0 \cdot 5980(08)$	$0 \cdot 6904(08)$	$0 \cdot 8126(09)$	
$\mathrm{O}(2)$	$0.5072(10)$	$0 \cdot 6700(10)$	$0 \cdot 6788(11)$	
$\mathrm{O}(3)$	$0 \cdot 5773(08)$	$0 \cdot 7327(08)$	$1.0765(08)$	
$\mathrm{O}(4)$	$0 \cdot 6766(09)$	$0 \cdot 6780(09)$	$1 \cdot 0905(09)$	
$\mathrm{O}(5)$	$0 \cdot 6361(10)$	0.6546(10)	1-3527(11)	
$\mathrm{O}(6)$	$0 \cdot 6637$ (11)	0.7506(11)	$1 \cdot 3321$ (11)	
$\mathrm{O}(7)$	$0.6528(08)$	$0 \cdot 8397(08)$	$1 \cdot 1146(10)$	
$\mathrm{O}(8)$	$0.7355(09)$	$0 \cdot 8182(09)$	$0 \cdot 8513(09)$	
$\mathrm{O}(9)$	$0.8431(14)$	$0 \cdot 8532(13)$	$0 \cdot 8825(16)$	
$\mathrm{O}(10)$	$0 \cdot 6422(08)$	$0 \cdot 9616$ (08)	1-0225(09)	
$\mathrm{O}(11)$	$0 \cdot 5476(14)$	1.0055(14)	$1 \cdot 1077(16)$	
$\mathrm{O}(12)$	0.5046 (10)	$0 \cdot 8422(10)$	$0 \cdot 5196(10)$	
$\mathrm{O}(13)$	0.4235(15)	$0 \cdot 8496(15)$	$0 \cdot 3475(17)$	
$\mathrm{O}(14)$	$0 \cdot 1673(37)$	$0 \cdot 3442(34)$	$0 \cdot 1574(39)$	
C(1)	0.5986(13)	$0 \cdot 7887(13)$	$0 \cdot 7271$ (14)	
$\mathrm{C}(2)$	$0.5705(12)$	$0 \cdot 7508(12)$	$0.8362(13)$	
$\mathrm{C}(3)$	$0 \cdot 6087(11)$	$0 \cdot 7665(11)$	0.9665(13)	
$\mathrm{C}(4)$	0.6043(12)	$0 \cdot 8322(11)$	1.0083(13)	
C(5)	0.6263(11)	$0 \cdot 8742(11)$	0.8916(13)	
C(6)	$0 \cdot 6028(12)$	$0.9374(11)$	0.9173 (13)	
$\mathrm{C}(7)$	0.6156(15)	0.9791 (14)	$0 \cdot 7977$ (16)	
C(8)	$0 \cdot 6163$ (14)	$0.9592(13)$	$0 \cdot 6750$ (14)	
$\mathrm{C}(9)$	$0.5992(13)$	$0 \cdot 8960$ (12)	0.6307(15)	
$\mathrm{C}(10)$	0.5871 (11)	$0 \cdot 8546(11)$	$0 \cdot 7616$ (13)	
C(11)	$0.5318(13)$	0.9003(13)	$0 \cdot 5523$ (14)	
C(12)	$0 \cdot 4669$ (14)	0.9297(15)	$0 \cdot 6223$ (16)	
C(13)	$0 \cdot 4015(16)$	$0 \cdot 9024(15)$	0.5503(17)	
C(14)	$0 \cdot 3777(20)$	$0 \cdot 9360(20)$	$0 \cdot 4219(21)$	
C(15)	$0 \cdot 3920$ (20)	0.9033(19)	$0 \cdot 3158(20)$	
C(16)	$0 \cdot 4331$ (15)	$0 \cdot 8442$ (15)	$0 \cdot 4885(17)$	
C(17)	$0 \cdot 5338(12)$	$0 \cdot 8483(12)$	1.0820(14)	
C (18)	$0 \cdot 7071(12)$	$0 \cdot 8774(12)$	$0 \cdot 8761$ (14)	
$\mathrm{C}(19)$	$0 \cdot 6589(15)$	0.8698(15)	$0 \cdot 5385(17)$	
$\mathrm{C}(20)$	$0 \cdot 6369$ (18)	1-0038(17)	$0 \cdot 5656$ (19)	
C(21)	$0 \cdot 5599$ (13)	$0 \cdot 6552(13)$	$0 \cdot 7344(14)$	
$\mathrm{C}(22)$	0.5976(12)	0.5972 (12)	$0 \cdot 7097(13)$	
$\mathrm{C}(23)$	$0 \cdot 5719(13)$	$0 \cdot 5623$ (13)	$0 \cdot 6114(16)$	
$\mathrm{C}(24)$	0.6072(14)	$0.5077(14)$	$0.5868(15)$	
$\mathrm{C}(25)$	$0 \cdot 6654(13)$	$0 \cdot 4949$ (13)	$0 \cdot 6595(14)$	
$\mathrm{C}(26)$	$0 \cdot 6923(14)$	$0.5301(14)$	$0.7638(15)$	
$\mathrm{C}(27)$	0.6577(14)	$0 \cdot 5826(15)$	$0.7868(15)$	
$\mathrm{C}(28)$	0.6190(12)	$0 \cdot 6914(12)$	1-1311(14)	
$\mathrm{C}(29)$	0.5813 (14)	$0 \cdot 6626(14)$	1-2478(15)	
$\mathrm{C}(30)$	$0 \cdot 5685(16)$	$0.5956(16)$	1-2086(17)	
$\mathrm{C}(31)$	$0.5188(20)$	$0.5894(20)$	1-0955(22)	
$\mathrm{C}(32)$	$0.5179(17)$	$0 \cdot 6939(16)$	1-3062(18)	
C(33)	$0 \cdot 6722(17)$	0.7050(17)	$1 \cdot 3887(20)$	
$\mathrm{C}(34)$	$0 \cdot 7270$ (25)	$0 \cdot 6897(24)$	$1 \cdot 4970$ (26)	
$\mathrm{C}(25)$	$0 \cdot 8040(16)$	$0 \cdot 8114(16)$	0.8563(18)	
$\mathrm{C}(36)$	$0 \cdot 8258(21)$	$0 \cdot 7494(21)$	$0 \cdot 8399(23)$	
$\mathrm{C}(37)$	$0.6112(15)$	$0 \cdot 9969(15)$	1.1112(18)	
$\mathrm{C}(38)$	$0 \cdot 6622(21)$	1-0236(21)	$1 \cdot 2064(21)$	
$\mathrm{C}(39)$	$0 \cdot 1430(61)$	$0 \cdot 2695(57)$	$0 \cdot 2057(61)$	
$\mathrm{C}(40)$	$0 \cdot 1673(46)$	0.2980(43)	$0 \cdot 2833(47)$	

* For these atoms an anisotropic temperature factor of the form: $T=\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\right.\right.$ $\left.\left.\beta_{13} h l+\beta_{23} h l\right)\right]$ was employed with parameters:

$$
\begin{array}{ccccccc}
& \beta_{11} & \beta_{22} & \beta_{33} & \beta_{12} & \beta_{13} & \beta_{23} \\
& \mathrm{Br} & 0.00439 & 0.00173 & 0.02049 & 0.00124 & 0.00418 \\
\mathrm{Cl} & 0.00217 & 0.00215 & 0.01386 & 0.00030 & 0.00203 & 0.00314 \\
\mathrm{Cl}
\end{array}
$$

and Watts four-circle automatic diffractometer with $\mathrm{Cu}-K_{\alpha}$ radiation.

Structure factors were calculated for all these reflexions with scattering factors for the bromine and chlorine atoms of $f^{\prime \prime} 1.5$ and 0.7 . These results are listed in Table 4. A comparison between the observed and calculated intensities
${ }^{12}$ J. M. Bijvoet, A. F. Peerdeman, and A. J. Van Bommel, Nature, 1951, 168, 271.
indicated that the assumed absolute configuration was in fact correct.

Table 2
Bond lengths (\AA) with standard deviations in parentheses

$\mathrm{Br}(1)-\mathrm{C}(25)$	1.914(15)	$\mathrm{C}(5)-\mathrm{C}(10)$	1-569(19)
$\mathrm{Cl}(1)-\mathrm{C}(17)$	1.820 (15)	$\mathrm{C}(5)-\mathrm{C}(18)$	1.541(20)
$\mathrm{O}(1)-\mathrm{C}(2)$	1-488(17)	$\mathrm{C}(6)-\mathrm{C}(7)$	1-551(21)
$\mathrm{O}(1)-\mathrm{C}(21)$	$1 \cdot 336(17)$	$\mathrm{C}(7)-\mathrm{C}(8)$	1-315(22)
$\mathrm{O}(2)-\mathrm{C}(21)$	1-193(18)	$\mathrm{C}(8)-\mathrm{C}(9)$	1-539(21)
$\mathrm{O}(3)-\mathrm{C}(3)$	1-473(16)	$\mathrm{C}(8)-\mathrm{C}(20)$	1-547(24)
$\mathrm{O}(3)-\mathrm{C}(28)$	1-347(17)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.633(20)$
$\mathrm{O}(4)-\mathrm{C}(28)$	1-204(18)	$\mathrm{C}(9)-\mathrm{C}(11)$	$1.506(21)$
$\mathrm{O}(5)-\mathrm{C}(29)$	1-492(19)	$\mathrm{C}(9)-\mathrm{C}(19)$	$1.579(23)$
$\mathrm{O}(5)-\mathrm{C}(33)$	1-383(23)	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.567(22)$
$\mathrm{O}(6)-\mathrm{C}(33)$	1-194(23)	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.563(24)$
$\mathrm{O}(7)-\mathrm{C}(4)$	1-421(17)	$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 566(27)$
$\mathrm{O}(8)-\mathrm{C}(18)$	1-471(18)	$\mathrm{C}(13)-\mathrm{C}(16)$	$1.580(25)$
$\mathrm{O}(8)-\mathrm{C}(35)$	1-309(21)	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.328(30)$
$\mathrm{O}(9)-\mathrm{C}(35)$	$1 \cdot 233(25)$	$\mathrm{C}(21)-\mathrm{C}(22)$	1.520 (20)
$\mathrm{O}(10)-\mathrm{C}(6)$	1-408(16)	$\mathrm{C}(22)-\mathrm{C}(23)$	1-357(21)
$\mathrm{O}(10)-\mathrm{C}(37)$	1-336(20)	$\mathrm{C}(22)-\mathrm{C}(27)$	1-417(21)
$\mathrm{O}(11)-\mathrm{C}(37)$	1-221(24)	$\mathrm{C}(23)-\mathrm{C}(24)$	1-433(22)
$\mathrm{O}(12)-\mathrm{C}(11)$	1-455(18)	$\mathrm{C}(24)-\mathrm{C}(25)$	1-353(22)
$\mathrm{O}(12)-\mathrm{C}(16)$	1-391(21)	$\mathrm{C}(25)$ - $\mathrm{C}(26)$	1-415(22)
$\mathrm{O}(13)-\mathrm{C}(15)$	$1 \cdot 396(27)$	$\mathrm{C}(26)-\mathrm{C}(27)$	1-382(22)
$\mathrm{O}(13)-\mathrm{C}(16)$	1-436(24)	$\mathrm{C}(28)$ - $\mathrm{C}(29)$	$1.522(21)$
$\mathrm{O}(14)-\mathrm{C}(40)$	$1 \cdot 647(62)$	$\mathrm{C}(29)-\mathrm{C}(30)$	1.592(24)
$\mathrm{C}(1)-\mathrm{C}(2)$	1-494(20)	$\mathrm{C}(29)$ - $\mathrm{C}(32)$	1-516(24)
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.554(20)$	$\mathrm{C}(30)-\mathrm{C}(31)$	1-484(28)
$\mathrm{C}(2)-\mathrm{C}(3)$	1-540(19)	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.545(34)$
$\mathrm{C}(3)-\mathrm{C}(4)$	1.554(19)	$\mathrm{C}(35)-\mathrm{C}(36)$	1.480 (30)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.569(19)$	$\mathrm{C}(37)-\mathrm{C}(38)$	1-489(28)
$\mathrm{C}(4)-\mathrm{C}(17)$	1.572 (19)	$\mathrm{C}(39)-\mathrm{C}(40)$	1-114(78)
$\mathrm{C}(5)-\mathrm{C}(6)$	1-527(19)		

DISCUSSION

This analysis has shown the molecular structure of clerodendrin A p-bromobenzoate chlorohydrin to be (III), hence structure (I) is confirmed for clerodendrin A.

The results of the anomalous dispersion calculation confirmed the spectral evidence that the absolute configuration of (III) is as shown in Figure 1. The

Figure 1 The molecule viewed along c axis showing the correct absolute configuration
absolute configuration of the 2-acetoxy-2-methylbutyric acid obtained by alkaline hydrolysis of (I) was de-

[^0]termined as $R-(-)$ by comparison of $[\alpha]_{\mathrm{D}}$ with the reported value for an authentic sample of known absolute stereochemistry. ${ }^{13}$ This result agreed with that from this X-ray analysis.

The C (arom.) -Br distance $(1.917 \AA$) is not much longer than values obtained in recent studies, e.g. $\mathrm{C}($ arom. $)-\mathrm{Br} 1.93$ in the enmein derivative, ${ }^{14} 1.91$ in ε-caesalpin, ${ }^{15} 1.90$ in the bromoindole derivative of 3β-methoxy-21-oxo- Δ^{13}-serratene, ${ }^{16}$ and $1.91 \AA$ in the O - p-bromobenzoate of batrachotoxinin A. ${ }^{17}$ The

Table 3
Valency angles (deg.) with standard deviations in parentheses

$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(21)$	117.2(1.0)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	1141
$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(28)$	115.7(1.0)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	114.6(1-4)
$\mathrm{C}(29)-\mathrm{O}(5)-\mathrm{C}(33)$	115.3(1.2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	102.3(1-3)
$\mathrm{C}(18)-\mathrm{O}(8)-\mathrm{C}(35)$	117.6(1.2)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$	101.0(1-3)
$\mathrm{C}(6)-\mathrm{O}(10)-\mathrm{C}(37)$	$120 \cdot 2(1 \cdot 1)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	109.3(1.7)
$\mathrm{C}(11)-\mathrm{O}(12)-\mathrm{C}(16)$	111.4(1-1)	$\mathrm{O}(13)-\mathrm{C}(15)-\mathrm{C}(14)$	$113 \cdot 1(1 \cdot 8)$
$\mathrm{C}(15)-\mathrm{O}(13)-\mathrm{C}(16)$	110.6(1.5)	$\mathrm{O}(12)-\mathrm{C}(16)-\mathrm{O}(13)$	$110 \cdot 4(1 \cdot 4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$110 \cdot 0(1 \cdot 1)$	$\mathrm{O}(12)-\mathrm{C}(16)-\mathrm{C}(13)$	107.9(1-3)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	106.8(1.0)	$\mathrm{O}(13)-\mathrm{C}(16)-\mathrm{C}(13)$	105.6(1-4)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	100.6(1.0)	$\mathrm{Cl}(1)-\mathrm{C}(17)-\mathrm{C}(4)$	$115 \cdot 1(0 \cdot 9)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.8(1-1)	$\mathrm{O}(8)-\mathrm{C}(18)-\mathrm{C}(5)$	109.7(1-1)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	109.1(1-0)	$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{O}(2)$	124.0(1-3)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	106.0(0.9)	$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$111 \cdot 2(1 \cdot 1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$115 \cdot 3(1 \cdot 0)$	$\mathrm{O}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	$124 \cdot 1(1 \cdot 3)$
$\mathrm{O}(7)-\mathrm{C}(4)-\mathrm{C}(3)$	106.4(1.0)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	117.1(1-2)
$\mathrm{O}(7)-\mathrm{C}(4)-\mathrm{C}(5)$	108.6(1.0)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(27)$	119.4(1-2)
$\mathrm{O}(7)-\mathrm{C}(4)-\mathrm{C}(17)$	$99.6(1 \cdot 0)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)$	123.4(1-3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.5(1 \cdot 0)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	117.7(1-4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(17)$	$113 \cdot 3(1 \cdot 0)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	118.1(1.4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(17)$	115.9(1.0)	$\mathrm{Br}(1)-\mathrm{C}(25)-\mathrm{C}(24)$	$119 \cdot 3(1 \cdot 1)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$111.6(1 \cdot 0)$	$\operatorname{Br}(1)-\mathrm{C}(25)-\mathrm{C}(26)$	115.6(1-1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$109.0(1 \cdot 0)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	124.9(1.4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(18)$	111.6(1-1)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	116.2(1.4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	105.6(1.0)	$\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(26)$	$119 \cdot 4(1 \cdot 3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(18)$	$105 \cdot 1(1 \cdot 0)$	$\mathrm{O}(3)-\mathrm{C}(28)-\mathrm{O}(4)$	124.7(1-3)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(18)$	113.5(1-1)	$\mathrm{O}(3)-\mathrm{C}(28)-\mathrm{C}(29)$	109.8(1-1)
$\mathrm{O}(10)-\mathrm{C}(6)-\mathrm{C}(5)$	109.9(1.0)	$\mathrm{O}(4)-\mathrm{C}(28)-\mathrm{C}(29)$	125.3(1-3)
$\mathrm{O}(10)-\mathrm{C}(6)-\mathrm{C}(7)$	105.1(1.0)	$\mathrm{O}(5)-\mathrm{C}(29)-\mathrm{C}(28)$	105.7(1-1)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$113.5(1 \cdot 1)$	$\mathrm{O}(5)-\mathrm{C}(29)-\mathrm{C}(30)$	$99 \cdot 5(1 \cdot 1)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	121.2(1-3)	$\mathrm{O}(5)-\mathrm{C}(29)-\mathrm{C}(32)$	109.5(1-2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	126.2(1.4)	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	107.0(1-2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(20)$	$116 \cdot 3(1 \cdot 4)$	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(32)$	117.9(1-3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(20)$	117.4(1.3)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(32)$	$115 \cdot 1(1 \cdot 3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$109 \cdot 5(1 \cdot 1)$	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$112 \cdot 1(1 \cdot 5)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	$105 \cdot 5(1 \cdot 1)$	$\mathrm{O}(5)-\mathrm{C}(33)-\mathrm{O}(6)$	$121 \cdot 9(1 \cdot 7)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(19)$	111.8(1.2)	$\mathrm{O}(5)-\mathrm{C}(33)-\mathrm{C}(34)$	$109 \cdot 2(1 \cdot 6)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	109.8(1-1)	$\mathrm{O}(6)-\mathrm{C}(33)-\mathrm{C}(34)$	128.4(1.9)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(19)$	110.9(1.1)	$\mathrm{O}(8)-\mathrm{C}(35)-\mathrm{O}(9)$	$120 \cdot 8(1 \cdot 7)$
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(19)$	108.9(1.2)	$\mathrm{O}(8)-\mathrm{C}(35)-\mathrm{C}(36)$	112.6(1.6)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	113.1(1.0)	$\mathrm{O}(9)-\mathrm{C}(35)-\mathrm{C}(36)$	126.2(1-8)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	110.7(1.0)	$\mathrm{O}(10)-\mathrm{C}(37)-\mathrm{O}(11)$	120.7(1.6)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	116.2(1.0)	$\mathrm{O}(10)-\mathrm{C}(37)-\mathrm{C}(38)$	112.8(1.5)
$\mathrm{O}(12)-\mathrm{C}(11)-\mathrm{C}(9)$	111.0(1-1)	$\mathrm{O}(11)-\mathrm{C}(37)-\mathrm{C}(38)$	126.3(1-7)
$\mathrm{O}(12)-\mathrm{C}(11)-\mathrm{C}(12)$	102.2(1-1)	$\mathrm{O}(14)-\mathrm{C}(40)-\mathrm{C}(39)$	$80 \cdot 3(4 \cdot 3)$

$\mathrm{C}(18)-\mathrm{Cl}$ distance ($1.826 \AA$) is longer than the reported mean of $1.767 \AA,{ }^{18}$ but the $\mathrm{C}-\mathrm{Cl}$ distances cover a wide range, e.g. $1.728-1.761$ in cis-1,2-diacetonyl-1,2,3,3tetrachlorocyclopropane, ${ }^{19} 1.800-1.814$ in a chlorine cage compound, ${ }^{20} 1.779$ in DL- N-chloroacetylalanine, ${ }^{21}$

[^1]TABLE 4
Forms used for the establishment of the absolute configuration

h	k	l	$F_{\mathrm{c}}(h k l)$	$F_{\mathrm{c}}(\bar{h} k l)$	ΔF^{*}	$\Delta I \dagger$
1	2	1	$60 \cdot 44$	53.62	$0 \cdot 238$	$0 \cdot 276$
1	5	1	$96 \cdot 41$	$101 \cdot 46$	$-0 \cdot 102$	-0.295
1	12	1	$23 \cdot 74$	$20 \cdot 54$	$0 \cdot 288$	0.275
4	2	1	$49 \cdot 71$	$43 \cdot 64$	$0 \cdot 259$	$0 \cdot 254$
5	13	1	$20 \cdot 38$	$24 \cdot 34$	-0.355	-0.449
6	14	1	$35 \cdot 26$	$30 \cdot 72$	$0 \cdot 274$	0.325
8	1	1	$43 \cdot 84$	$37 \cdot 86$	$0 \cdot 291$	$0 \cdot 376$
8	13	1	24.08	$19 \cdot 53$	$0 \cdot 413$	0.535
1	18	2	$33 \cdot 54$	$29 \cdot 42$	$0 \cdot 261$	0.294
2	5	2	57.55	53.07	$0 \cdot 162$	$0 \cdot 224$
3	2	2	26.91	31.53	-0.314	-0.914
4	7	2	$73 \cdot 73$	$69 \cdot 69$	$0 \cdot 112$	0.050
4	15	2	16.30	$20 \cdot 09$	-0.412	-0.668
5	1	2	36.94	$32 \cdot 62$	$0 \cdot 247$	0.265
5	11	2	31.93	$25 \cdot 68$	$0 \cdot 429$	0.727
2	4	3	51.78	$45 \cdot 19$	$0 \cdot 270$	$0 \cdot 387$
2	10	3	53.08	$48 \cdot 15$	$0 \cdot 194$	$0 \cdot 180$
3	1	3	50.63	$46 \cdot 25$	$0 \cdot 181$	$0 \cdot 203$
3	2	3	$88 \cdot 59$	93-13	$-0 \cdot 100$	-0.201
3	9	3	$42 \cdot 70$	47-34	-0.206	-0.443
4	4	3	$70 \cdot 18$	$64 \cdot 67$	$0 \cdot 163$	$0 \cdot 190$
5	6	3	$53 \cdot 44$	$48 \cdot 04$	$0 \cdot 212$	$0 \cdot 316$
6	2	3	41.01	36.25	$0 \cdot 246$	$0 \cdot 409$
1	1	4	$63 \cdot 17$	$69 \cdot 70$	$-0 \cdot 196$	-0.335
4	1	4	14.93	$19 \cdot 11$	-0.484	-0.991
6	5	4	$69 \cdot 16$	64.04	$0 \cdot 154$	$0 \cdot 159$
7	4	4	$60 \cdot 60$	56.03	$0 \cdot 157$	$0 \cdot 246$
9	2	4	$62 \cdot 42$	$58 \cdot 60$	$0 \cdot 126$	$0 \cdot 162$
1	4	5	41.95	$38 \cdot 30$	$0 \cdot 182$	$0 \cdot 246$
7	2	5	33.37	36.81	$-0 \cdot 196$	-0.326
6	4	6	$36 \cdot 46$	$33 \cdot 10$	$0 \cdot 192$	$0 \cdot 187$
* $\Delta F=2\left\{\left[F_{\mathrm{c}}(h k l)\right]^{2}-\left[F_{\mathrm{c}}(\bar{h} k l)\right]^{2}\right\} /\left\{\left[F_{\mathrm{c}}(h k l)\right]^{2}+\left[F_{\mathrm{c}}(\bar{\hbar} k l)\right]^{2}\right\}$. $\dagger \Delta I=2\left\{\left[I_{0}(h k l)\right]^{2}-\left[I_{0}(\bar{h} k l)\right]^{2}\right\} /\left\{\left[I_{0}(h k l)\right]^{2}+\left[I_{0}(\bar{h} \bar{k})\right]^{2}\right\}$.						

Table 5

(a) Mean planes in (III). Distances, d, in \AA of atoms from the planes are given in square brackets, with, in parentheses d / σ

Plane (1): $\mathrm{C}(22), \mathrm{C}(23), \mathrm{C}(25)$
$[\mathrm{C}(22) 0.001(0.07), \mathrm{C}(23) 0.004(0.28), \mathrm{C}(25)-0.013(0.87)$, $\mathrm{C}(26) \quad 0.016$ (1.15), $\quad \mathrm{C}(27)-0.011 \quad(0.74), \quad \mathrm{Br}(1) \quad 0.009$ (4.73), $\mathrm{C}(21) 0.024(1.84), \mathrm{O}(2)-0.036(3.39)]$

Plane (2): C(2), C(3), C(5), C(10)
$[\mathrm{C}(2)-0.001(0.07), \mathrm{C}(3) 0.001(0.08), \mathrm{C}(5)-0.001(0.08)$, $\mathrm{C}(10) 0.001(0.08), \mathrm{C}(1) 0.708(54.46), \mathrm{C}(4)-0.616(51.33)]$
Plane (3): C(6)-(10)
$[\mathrm{C}(6) 0.000(0.98), \mathrm{C}(7)-0.015(1.80), \mathrm{C}(8) 0.026(1.61)$, $\mathrm{C}(9)-0.021(1.61), \mathrm{C}(10) 0.010(0.84), \mathrm{C}(5) 0.713(63.66)]$
Plane (4): C(12), C(13), C(16), $\mathrm{O}(12)$
$\left[\begin{array}{lllll}C(12) & -0.006 & (0.41), & C(13) & 0.009 \\ (0.54) & \mathrm{C}(16)-0.010\end{array}\right.$ (0.63), $\mathrm{O}(12) 0.007(0.69), \mathrm{C}(11) 0.516(39.09)]$

Plane (5): C(13)-(16), O(13)
$[\mathrm{C}(13)-0.006(0.36), \mathrm{C}(14) 0.003(0.14), \mathrm{C}(15) 0.002(0.10)$, $\mathrm{O}(13)-0.007(0.44), \mathrm{C}(16) 0.008(0.50)]$
(b) Equations of planes, where X, Y, and Z are co-ordinates in \AA

$$
\begin{aligned}
& \text { (1) }: 0.5882 X+0.4621 Y-0.6636 Z-8.1996=0 \\
& \text { (2) }: 0.8756 X-0.2475 Y-0.4147 Z-1.7509=0 \\
& \text { (3) }: 0.9779 X-0.2024 Y+0.0506 Z-7.3232=0 \\
& \text { (4) }: 0.2221 X+0.5062 Y-0.8333 Z-7.4563=0 \\
&(5): 0.9006 X+0.4290 Y-0.0685 Z-15.2858=0 \\
& \text { (6) } a: 0.8910 X+0.0254 Y+0.4532 Z-13.8799=0 \\
& \text { (7) }^{b}: 0.9503 X-0.0340 Y+0.3094 Z-13.3790=0 \\
& \text { (8) } c: 0.7658 X+0.3353 Y-0.5487 Z-10.8329=0
\end{aligned}
$$

(c) Angles (deg.) between planes

$$
\begin{array}{llll}
(2)-(6) & 125 \cdot 9 & (3)-(8) & 130 \cdot 8 \\
(2)-(7) & 122 \cdot 8 & (4)-(5) & 118 \cdot 1
\end{array}
$$

${ }_{a}$ Plane (6): $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(10) . \quad{ }^{b}$ Plane (7): $\mathrm{C}(3)-(5)$.

- Plane (8): C(5), C(6), C(10).
and 1.82 and $1.85 \AA$ in 3β-chloro- 5 -androstan- 17β-ol. ${ }^{22}$ The $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ distances are $1 \cdot 486-1 \cdot 626 \AA$ and the $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{2}\right)$ distances vary from $1 \cdot 481$ to $1 \cdot 557 \AA$. The mean values (1.553 and $1.529 \AA$) do not differ significantly from the accepted means. The $\mathrm{C}(8)-\mathrm{C}(20)$ distance ($1.553 \AA$) however, is within the range for a $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ rather than a $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right)$ bond. ${ }^{23-25}$
The aromatic ring [C(22)-(27)] is planar (Table 5) with a mean deviation of $0.008 \AA$ [plane (1)]. When the substituent atoms $\mathrm{Br}, \mathrm{C}(21), \mathrm{O}(2)$ are included this value increases to $0.023 \AA$.
The cyclohexane and cyclohexene rings of the transoctalin system are in chair and sofa conformations. In ring A, valence angles vary from $109 \cdot 3$ to $115 \cdot 6^{\circ}$. The mean value $\left(111 \cdot 3^{\circ}\right)$ is close to that of $111 \cdot 6^{\circ}$ for a chair form of cyclohexane calculated by Hendrickson from strain-energy minimization calculations. ${ }^{26}$ Dihedral angles about the $\mathrm{C}(3)-\mathrm{C}(4)$ and the $\mathrm{C}(4)-\mathrm{C}(5)$ bonds (51.0 and 47.7°) show some deviation from the theoretical ${ }^{26}$ value $\left(54 \cdot 4^{\circ}\right)$. The values obtained for rings A and B are shown in Table 6 and 7. The $\mathrm{C}(2)$,

Table 6
Dihedral angles (deg.) for rings A and B. The value quoted for each bond refers to the dihedral angle about that bond within the ring in question

Table 7
Valence angles (deg.) for rings A and B. The value quoted for each atom refers to the valency angles about that atom within the ring in question

Ring A			Ring B		
Atom	Found	Calc.*	Atom	Found	Calc. \dagger
$\mathrm{C}(1)$	$110 \cdot 0$	111.6	C(5)	$105 \cdot 6$	$110 \cdot 5$
$\mathrm{C}(2)$	$108 \cdot 8$	111.6	C (6)	113.5	$108 \cdot 5$
C) 3)	$115 \cdot 3$	111.6	C(7)	121.2	$123 \cdot 0$
C(4)	111.5	111.6	C(8)	$126 \cdot 2$	124.0
$\mathrm{C}(5)$	$109 \cdot 0$	$111 \cdot 6$	$\mathrm{C}(9)$	109.5	113.5
$\mathrm{C}(10)$	$113 \cdot 1$	111.6	$\mathrm{C}(10)$	116.2	112.5
		rom ref	From rer	28.	

$C(3), C(5)$, and $C(10)$ atoms [plane (2)] are coplanar and the deviations of the atoms $C(1)$ and $C(4)$ from the plane are 0.708 and $0.616 \AA$, respectively. The angle between plane (2) and that of the atoms $\mathrm{C}(1)$, $\mathrm{C}(2)$, and $\mathrm{C}(10)$ is $125 \cdot 9^{\circ}$, whereas that between plane (2) and the plane of the atoms $\mathrm{C}(3)-(5)$ is expanded
${ }^{22}$ C. M. Weeks, A. Cooper, and D. A. Norton, Acta Cryst., 1971, B, $2^{27}, 531$.
${ }^{23}$ P. Coggon and G. A. Sim, J. Chem. Soc. (B), 1969, 237.
${ }^{24}$ J. Bordner, R. H. Stanford, jun., and R. E. Dickerson, Acta Cryst., 1970, B, 26, 2107.
${ }^{25}$ A. Itai, S. Nozoe, S. Okuda, and Y. Iitaka, Acta Cryst., 1969, B, 25, 872.
${ }^{26}$ J. B. Hendrickson, J. Amer. Chem. Soc., 1967, 89, 7036.
to $135 \cdot 4^{\circ}$ compared with values of $122 \cdot 8^{\circ}$ obtained from the theoretical value for a chair-form of cyclohexane. This would appear to be a torsion caused by an axial chloromethyl group at $C(4)$ and by the fusion of the distorted ring B. ${ }^{27}$

Figure 2 Conformation of ring B viewed through $\mathrm{C}(7)-\mathrm{C}(8)$ along plane (3)

In cyclohexene ring \mathbf{B}, the observed dihedral angles are in good agreement with the value calculated by Bucourt and Hainaut ${ }^{28}$ for the 'sofa' conformation, which is more energetic than the 'half-chair' conformation. The dihedral angles ($5 \cdot 20$ and $5 \cdot 26^{\circ}$) at $\mathrm{C}(7)-\mathrm{C}(8)$ and $C(8)-C(9)$ deviate from the theoretical value $\left(0^{\circ}\right.$ for both angles), while the values of the other angles are very close to those calculated. The deviations of the valence angles are within 5°, mean deviation $3 \cdot 1^{\circ}$, compared with the theoretical values (Table 7). Atoms C(6)-(10) [plane (3); Table 5] are closely coplanar and the deviation of atom $C(5)$ from the plane is $0.713 \AA$. The angle of $130 \cdot 8^{\circ}$ between plane (3) and that of the atoms $C(5), C(6)$, and $C(10)$ is close to the calculated value. Then, ring B is closer to the ideal sofa conformation than is ring E of 3β-methoxy-2l-oxo-Δ^{13}-serratene ${ }^{29}$ and ring C of ε-caesalpin (Figure 2). ${ }^{15}$ Ring B exists in the sofa conformation even if it is not attached to small rings as in the serratene and ε caesalpin derivatives.

It is shown both theoretically ${ }^{28}$ and empirically ${ }^{30}$ that Δ^{2}-octalin is more stable than Δ^{1}-octalin. Bucourt and Hainaut also made calculations concerning dihedral angles and concluded that the stable Δ^{2}-octalin possesses a monoplanar conformation, and a favourable conformation for the energetic Δ^{1}-octalin is an intermediate between mono- and 1,2 -di-planar forms. We have applied these data to the problem of the conformation of the octalin system in clerodendrin A. This distortion of the normally stable octalin ring may be caused by the effect not only of the 1,3-diaxial interactions between the $\mathrm{C}(5)-\mathrm{CH}_{2} \cdot \mathrm{OAc}$ and the $\mathrm{C}(9)-\mathrm{CH}_{3}[3.522 \AA$ between the $\mathrm{C}(18)$ and $\mathrm{C}(19)$ distance] but also the distortion of the $C(5)$ substituent from the steric-compression effect by groups at $\mathrm{C}(4)$ and $\mathrm{C}(6)$ (Figure 3). The sum of the dihedral angles of the plane $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$ and $\mathrm{C}(6)^{-C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$ is $110 \cdot 06^{\circ}$ which is less than the calculated value $\left(120^{\circ}\right)$. This is attributed to bending of ring a by the $C(4)$ substituent.

Rings C and D of the tetrahydrofurofuran ring exhibit

[^2]the envelope and coplanar conformations. Bond lengths of ring c vary from 1.388 to $1.580 \AA$ and their values are very close to those in ring c of clerodin bromolactone. Valence angles of ring c are also close to those of the clerodin derivative. The mean values of bond lengths and valence angles are close to those of the tetrahydrofuran ring. ${ }^{31}$ However, in ring D, bond lengths and valence angles are very close to those of the outer dihydrofuran ring in aflatoxin $\mathrm{B}_{1} \cdot{ }^{32}$ Ring c exists in the envelope form, where atoms $\mathrm{C}(12)$, $\mathrm{C}(13), \mathrm{C}(16)$, and $\mathrm{O}(12)$ [plane (4)] are almost coplanar, with $\mathrm{C}(\mathrm{ll})$ displaced by $0.516 \AA$ and all atoms of ring D lying within $0.007 \AA$ of the plane [plane (5)]. The angle between plane (4) and the plane of ring D is $118 \cdot 1^{\circ}$ which is close to the value ($117 \cdot 2^{\circ}$) for the similar ring system in aflatoxin $\mathrm{B}_{2}{ }^{33}$ but greater than for clerodin $\left(114 \cdot 3^{\circ}\right)$ and aflatoxin $\mathrm{B}_{1}\left(113 \cdot 3^{\circ}\right)$.

The solvated ethanol molecule is associated with a high thermal vibration, as can be seen from the high σ values for the bond lengths and valence angles. The bond lengths of $\mathrm{C}(39)-\mathrm{C}(40)$ and $\mathrm{C}(39)-\mathrm{O}(14)$

Figure 3 The unit cell contents viewed along a
are very different from those of the solvated ethanol of the serratene derivative (1.610 and $1 \cdot 232 \AA$) and in ethanol itself (1.54 and $1.48 \AA$). ${ }^{18} \quad$ It seems reasonable to reverse the $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bonds the ethanol molecule. However, if the atomic parameters of $\mathrm{C}(39)$ and $\mathrm{O}(14)$ are interchanged, the isotopic temperature factors of the atoms are very high, giving rise to large uncertainties in the atomic locations.

We thank Dr. N. Sakabe for suggestions concerning the presentation of this work, Professors J. Tanaka and Y. Hirata for their encouragement, and the University of Nagoya and Tokyo Computing Center for services and computer time.
[2/1428 Received, 19th June, 1972]

[^3]
[^0]: ${ }^{13}$ B. W. Christensen and A. Kjær, Acta Chem. Scand., 1962, 16, 2466 ; S. C. Nyburg, G. L. Walford, and Peter Yates, Chem. Comm., 1965, 203.
 ${ }^{14}$ P. Coggon and G. A. Sim, J. Chem. Soc. (B), 1969, 413.
 ${ }^{15}$ K. B. Birnbaum and G. Ferguson, Acta Cryst., 1969, B, 25, 720.

[^1]: ${ }^{16}$ F. H. Allen and J. Trotter, J. Chem. Soc. (B), 1970, 721.
 ${ }^{17}$ I. L. Karle and J. Karle, Acta Cryst., 1969, B, 25, 428.
 ${ }^{18}$ Chem. Soc. Special Publ., No. 11, 1958.
 ${ }^{19}$ F. P. Boer, J. J. Flynn, and J. K. Hecht, J. Chem. Soc. (B), 1970, 381.
 ${ }^{20}$ H. Shimanouchi and Y. Sasada, Acta Cryst., 1970, B, 26, 563.
 ${ }^{21}$ F. E. Cole, Acta Cryst., 1970, B, 26, 622.

[^2]: ${ }^{27}$ E. J. Corey and R. A. Sneen, J. Amer. Chem. Soc., 1955, ray, 2505.
 ${ }_{28}$ R. Bucourt and D. Hainaut, Bull. Soc. chim. France, 1965, 1366.
 ${ }^{29}$ F. H. Allen and J. Trotter, J. Chem. Soc. (B), 1970, 721.

[^3]: ${ }^{30}$ R. B. Turner, W. R. Meader, and R. E. Winkler, J. Amer. Chem. Soc., 1957, 79, 4122.
 ${ }^{31}$ M. Shiro and H. Koyama, J. Chem. Soc. (B), 1970, 243.
 ${ }^{32}$ T. C. van Soest and A. F. Peerdeman, Acta Cryst., 1970, $B, 26,1940,1947$.
 ${ }_{33}$ T. C. van Soest and A. F. Peerdeman, Acta Cryst., 1970, $B, 26,1956$.

